

Using new antiretroviral agents and dosing with TB treatment

Dr Sarah Stacey – Wits RHI

(Slides courtesy of Dr Sean Wasserman - University of Cape Town)

HIV drives TB incidence

Kwan CMR 2011

High burden of HIV-associated TB

WHO Global Report 2016

HIV-associated TB has worse outcomes

Estimated case fatality ratios (CFRs) in the absence of treatment

CATEGORY OF TB CASE	CFR (95% UNCERTAINTY INTERVAL)
HIV-negative, not on TB treatment	0.43 (0.28–0.53)
HIV-positive, not on TB treatment or ART	0.78 (0.65-0.94)

WHO Global report 2015

Improved outcomes on ART

- Observational studies: 64 95% reduced mortality
- SAPIT: 56% reduced mortality when ART started during TB Rx (median CD4 ~150)

Abdool Kariem NEJM 2010

All HIV-infected people should start ART

Recommendation 1: When to start ART among people living with HIV			
Target population	Specific recommendation	Strength of the recommendation	Quality of the evidence
Adultsª (>19 years)	ART should be initiated in all adults living with HIV at any CD4 cell count	Strong	Moderate
	As a priority, ART should be initiated in all adults with severe or advanced HIV clinical disease (WHO clinical stage 3 or 4) and individuals with CD4 count \leq 350 cells/mm ³	Strong	Moderate

health

Department: Health REPUBLIC OF SOUTH AFRICA

ART coverage associated with reduced TB incidence

ART not fully protective

Gupta PloS ONE 2012

Many people will be on TB treatment and ART

- Important to understand co-prescribing in HIV/TB
- Consequences of DDIs:
 - Reduced treatment efficacy due to low exposures (in both directions)
 - Increased risk of toxicity due to increased concentrations
- Identify and manage shared toxicities

Bioavailability influenced by drug transporters and metabolising enzymes

Induced by rifampicin Inhibited by ritonavir

Bailey CMAJ 2004

CYPs major metabolic pathway for TB drugs and ARVs

Zanger Pharmacology and Therapeutics 2013

CYPs major metabolic pathway for TB drugs and ARVs

Zanger Pharmacology and Therapeutics 2013

Treatment for DS-TB same in HIV on ART

• Rifampicin		Weight-based dosing	
 Isoniazid Ethambutol Pyrazinamide 	2 months	30 - 37 kg: 2 RHZE 38 - 54 kg: 3 RHZE 55 - 70 kg: 4 RHZE > 70 kg: 5 RHZE	
 Rifampicin Isoniazid 	4 months	30 - 37 kg: 2 RH (150/75) 38 - 54 kg: 3 RH (150/75) 55 - 70 kg: 2 RH (300/150) > 70 kg: 2 RH (300/150)	

Give daily

Rifampicin leads to increased transcription of CYP3A4

Tompkins J Biochem Mol Toxicol 2007

Rifampicin is a potent inducer of multiple enzyme/transporters: DDIs

Enzyme/transporter	ARV substrate
CYP3A4 CYP2B6	PIs, NVP EFV, NVP
P-glycoprotein	PIs TAF
BCRP	TAF
UGT1A1	Raltegravir Dolutegravir

Rifampicin and EFV

- Package insert reports reduced EFV exposure and recommends dose increase to 800 mg daily with rifampicin if weight > 60kg
- But no difference in exposure or impact on clinical outcomes when EFV 600 mg used with rifampicin

Paradoxically EFV exposure increased in some patients on TB treatment

SAPIT study: 30% reduction in EFV clearance during TB treatment (20% 'slow metabolisers')

> Gengiah Eur J Cin Pharm 2012 Luetkemeyer CID 2013

EFV concentrations higher in patients with slow metaboliser CYP2B6 genotypes on TB Rx

Increased EFV concentrations during TB treatment in patients with slow metaboliser genotypes may be explained by INH inhibition of CYP2A6

This may lead to increased risk of EFV-neurotoxicity

Consider EFV toxicity in all HIV/TB patients with unexplained encephalopathy BJCP British Journal of Clinical Pharmacology

Letter to the Editors

Severe efavirenz-induced vacuolar axonopathy complicated by fatal aspiration pneumonia

Chris Kenyon,¹ Sipho Mfolozi,² Roland Croxford,³ Robert Colebunders⁵ & Karen Cohen⁴

J Acquir Immune Defic Syndr. 2017 May 17. doi: 10.1097/QAI.000000000001451. [Epub ahead of print]

Late efavirenz-induced ataxia and encephalopathy: a case series.

Variava E¹, Sigauke FR, Norman J, Rakgokong M, Muchichwa P, Mochan A, Maartens G, Martinson NA.

Rifampicin and LPV/r

- PIs substrates of CYP3A4 and P-gp
- Rifampicin reduces LPV/r exposure by 75%

Decloedt AAC 2011

Double dose of LPV/r overcomes induction by rifampicin

 Although limited hepatotoxicity and few discontinuations in study, poorly-tolerated in practice

Decloedt AAC 2011

Rifampicin reduces exposure of all PIs

- ATV 95%: don't co-administer
- DRV 57%: don't co-administer
 - Modelling study found potential doses to overcome induction:

Dose	Mean DRV AUC ₀₋₂₄ (90% CI)	Mean reduction in AUC ₀₋₂₄
800/100 OD	69.4 (68.0–70.8)	Ref
800/100 OD + RIF	29.7 (29.0–30.4)	57%
1200/200 OD +RIF	51.4 (50.3–52.6)	26%
1600/200 OD + RIF	68.5 (67.0–70.1)	1.3%
800/100 BD + RIF	58.7 (57.6–59.8)	15%

Rifampicin reduces RAL exposure in healthy volunteers

Wenning AAC 2009

But what is the PK and clinical impact in HIV/TB patients?

- ANRS-REFLATE trial: Phase II open label RCT
- Primary endpoint: HIV-1 RNA < 50 copies/mL at Wk 24
 - Powered to compare to historical average: not efficacy comparison

Grinsztejn LID 2014

Lower trough with RAL 400 + RIF but not significant

Taburet CID 2015

Clinical impact of standard RAL dose in HIV/TB: similar rates of virological suppression

Requires Phase III trial, but based on these limited PK and clinical data RAL 400 recommended for patients on TB treatment (IAS-USA)

Grinsztejn LID 2014 Günthard JAMA 2016

RIF reduces DTG exposure: (over)compensated by BD dosing

- Healthy volunteers:
 - Increased clearance with rif, but Cmin still above IC₅₀ threshold with BD dosing
 - DTG 50 mg BD +
 RIF has higher
 exposures (33%)
 than DTG 50 mg
 OD alone

Dooley JAIDS 2013

Recommended dose 50 mg BD with TB Rx, but important questions:

- Does it translate into similar efficacy compared with EFV?
- Emerging concerns about neuropsychiatric AEs on DTG
 - Meta-analysis of clinical trials: uncommon but similar frequency to EFV
 - Discontinuation due to intolerability ~14% in European cohorts (NP-AEs most common reason)
- UGT1A1 polymorphisms
 - Higher exposures and toxicity?
- Higher pill burden than FDC – Adherence?
- More potent than EFV
 - More IRIS?

van den Berk CROI 2016 De Boer AIDS 2016 Menard AIDS 2017 Viswanathan CROI 2017

Rifampicin and TAF

- Much higher intracellular concentration of active drug than TDF, and much lower plasma concentration of TFV
 - Less toxicity
 - Lower doses required
- TAF substrate of P-gp and other transporters: inhibited by RTV, cobicistat, induced by rifampicin
- No PK studies with rifampicin, but co-administration not recommended (package insert)

Sax Lancet 2015

Rifabutin and ARVs

- Rifabutin is a weak inducer and a substrate of CYP3A4
 - Minimal effect on PI exposure: used in TB treatment with PIs
 - PIs inhibit RBT increasing exposure and necessitating dose reduction

Interaction	Rifampicin	Rifabutin
Major metabolic pathway	Deacetylation, hydrolysis to	CYP3A-mediated
	formyl derivatives	hydroxylation, deacetylation
Serum half-life (h)	2-5	32-67
Effect on CYP3A	Pronounced	Weak
Auto-induction	Yes	Yes
Example of CYP3A induction: effect on indinavir AUC	92% decrease	34% decrease
Change in AUC when given with a CYP3A inhibitor ^a	No effect	293% increase

Rifabutin and ARVs

- Dosing with PIs:
 - RBT 150 mg daily results in similar exposure to standard dose (300 mg daily) without PI: new recommendation
 - But increased des-rifabutin metabolite and risk of toxicity: monitor ALT, neutrophils, and vision
- Dosing with NNRTIs
 - EFV induces RBT (38% reduction in AUC): increase RBT dose to 450 mg daily
 - RPV exposure reduced by 42% with RBT: increase RPV dose 50 mg daily (US guidelines: avoid)

Summary of important DDIs in DS-TB

Antiretroviral	Rifampicin	Other DS-TB Rx	
Efavirenz	Does not require dose adjustment	Caution with INHIncr RBT dose	
Nevirapine	Omit 200 mg daily lead-in dose	Worse outcomes with TB Rx	
Rilpivirine/etravirine	Do not coadminister	Incr RVP dose with RBT	
Lopinavir/ritonavir	 Requires double dose with 4 tablets (800/200 mg) BD Increase the dose gradually 	 Can use with RBT (adjust RBT dose) 	
Atazanavir/ritonavir	Do not coadminister		
Darunavir/ritonavir	Do not coadminister		
Raltegravir	Standard dose		
Dolutegravir	Double dose 50 mg BD	 No adjustment with RBT 	
Elvitegravir	Do not coadminister		
TAF	Do not coadminister		

Preferred regimens in TB co-infection

- WHO and NDoH: TDF + 3TC/FTC + EFV (600)
- IAS-USA: EFV, DTG, RAL (boosted PI only if INSTI not an option)

Bonnet LID 2013

Definitions of TB Drug Resistance

DR-TB is a big problem

- Incidence of MDR-TB unchanged or declining less slowly
- Around 600,000 cases of MDR in 2015
- Quarter of a million deaths
- 9.5% of MDR have XDR-TB

DR-TB is a big problem

- < 50% treatment success in high burden countries
- XDR mortality in 2013: 27%
- XDR treatment success: 28%

WHO Global Report 2015/6 Pietersen Lancet 2014

Standard Rx for MDR-TB: no major DDIs with ART

Conventional

Mfx/Km/Eto/Tzd/PZA ± hdINH/Emb

18 – 24 months

Shortened

Mfx/Km/Cfz/PZA/Emb/Eto (± hdINH) 12 Months

BDQ and DLM are being rolled out

The use of bedaquiline in the treatment of multidrug-resistant tuberculosis

Interim policy guidance

The use of delamanid in the treatment of multidrug-resistant tuberculosis

Interim policy guidance

WHO Global Report 2016

Multiple trials of new DR-TB regimens

Trial	Phase	Patients	Design	Primary end point
NExT (NCT02454205)	Phase 2 to 3	MDR-TB, adults $n = 300$	Open-label RCT of an injection-free regimen including linezolid ^a and bedaquiline (plus standard drugs without kanamycin) for 6–9 months compared with WHO standard	Favorable outcome at 24 months
Nix-TB (NCT02333799)	Phase 3	MDR- and XDR-TB, adults $n = 200$	Open-label, single-arm evaluation of bedaquiline and pretomanid plus linezolid ^b for 6–9 months	Bacteriologic or clinical failure at 24 months
endTB (NCT02754765)	Phase 3	MDR-TB, adults n = 750	Open-label RCT of five all-oral experimental regimens compared with standard of care. Experimental regimens contain bedaquiline and/or delamanid together with four companion drugs, including linezolid ^c	Favorable outcome at 18 months
TB-PRACTECAL (NCT02589782)	Phase 2 to 3	MDR-TB, adults $n = 630$	Open-label RCT comparing three novel regimens including bedaquiline, pretomanid, and linezolid ^d , plus moxifloxacin or clofazimine with WHO standard of care	Culture conversion and discontinuation/death at 8 weeks, unfavorable outcome at 72 weeks
MDR-END (NCT02619994)	Phase 3	MDR-TB, adults n = 238	Open-label RCT comparing a 9–12-month regimen of delamanid, linezolid ^e , levofloxacin, and pyrazinamide with WHO standard or care	Treatment success at 24 months

Bedaquiline

- Diarylquinoline, novel MoA: potent against MTB
- Accumulates in tissues: extremely long half life ~6 months
- Metabolised by CYP3A4 to M2 metabolite (less active, more toxic); no influence on CYP or transporters

AEs include QT prolongation and hepatitis: related to dose?

BDQ DDIs: NNRTIs

- EFV steady state concentrations reduced by 52% (modelling study): do not coadminister
- NVP has no significant effect on BDQ bioavailability in models and clinical study
 - Can be used
- Rilpivirine: not studied, unlikely to have an effect on BDQ concentrations

Pandie JAC 2016 Svensson AAC 2013

BDQ DDIs: Aluvia

- Model: reduces BDQ clearance by 35%, M2 clearance by 58% (2- and 3-fold increase in steady state concentrations)
- Patients: 62% increase in AUC
- Clinical consequences unclear: monitor ECG closely

Delamanid

- Nitroimidazole
- Metabolised by albumin, smaller contribution by CYP3A4
- Associated QT prolongation
- No impact on EFV or LPV/r exposure
- Higher DLM concentrations with LPV/r: clinical impact?

Mallikaarjun AAC 2016 Sasahara Drug Metab Dispos 2015

Other new/repurposed drugs

- Pretomanid (PA-824)
 - Metabolised by CYP3A4
 - Phase I study: reduced exposure with EFV avoid
- Clofazimine
 - Substrate of P-gp: effect of PIs?
- Linezolid
 - May be a P-gp and/or CYP substrate: effect of PIs?

Summary of important DDIs in DR-TB

Antiretroviral	Bedaquiline	Delaminid
Efavirenz	Do not coadminister	No interaction
Nevirapine	No dose adjustment	Not expected
Rilpivirine	Not expected	Not expected
Lopinavir/ritonavir		Increased DLM
Atazanavir/ritonavir	Increases BDQ exposure: may lead to	exposure: clinical
Darunavir/ritonavir		relevance?
Raltegravir	No interaction expected	• Not studied, no
Dolutegravir		interaction expected

Shared toxicities

All TB drugs **NNRTIs** Cotrimoxazole

FQs, BDQ, DLM, CFZ

RHZ, RBT, FQs, BDQ, PMD, DLM NNRTIS, PIS Cotrimoxazole

INH, TZD, LZD d4T, ddI

SLIs, Rif

INH, TZD EFV, DTG

Conclusions

- Many people on HIV and TB treatment
- Clinical consequences of DDIs and shared toxicity
- Many potential DDIs, particularly with rifampicin
- Key new HIV and TB drugs have important DDIs